Soybean response to drought

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Although drought typically is an infrequent occurrence in Iowa, 2012 has been an exception to the rule. Winter, spring and early summer precipitation has been below long-term average, and soybeans in some areas of the state are experiencing periodic water stress due to inadequate available water content in upper soil depths. Farmers have asked whether drought stress early in the season can influence yield if precipitation levels approach long-term average later in the season. 

Soybean is susceptible to yield loss from water deficit, drought stress, at two key developmental stages, germination and reproduction-seed development. Soybean must imbibe about 50 percent of its weight in water to germinate and begin to develop the radicle and hypocotyl, the primary root and shoot tissues. Seed planted into dry soil, or not placed into the soil, will be unable to imbibe water at all until adequate precipitation has occurred. Soybean can respond to water deficit as early as two days after germination. Water deficit at this time results in poor hypocotyl elongation, while root elongation may be unaffected. Drought stress at later vegetative stages of development has similar results: shoot growth is decreased or stopped, but roots can continue to grow. This evolutionary response in soybean allows the plant to search for additional soil water while having an overall low water use rate. Assuming adequate rainfall occurs again, soybean have the ability to reinitiate shoot growth, and shoot growth rate may be greater than that observed prior to the onset of drought stress. This is called compensatory growth.

Short-term, moderate drought stress during vegetative growth stages generally does not impact soybean yield. Conversely, longer-term severe drought stress can cause irreversible plant cell death causing low growth yield.

Soybean yield is most sensitive to water deficits during reproduction. Soil water deficits during reproductive growth phase results in increased flower abortion, reduced pod number, reduced seed per pod, and small seed. Nitrogen fixation is a key biochemical pathway for soybean yield and nitrogen fixation can be severely limited or completely halted by even moderate drought stress. Once nitrogen fixation has been stopped, substantial precipitation and soil water accumulation is required to reinitiate the process. Compensatory reproductive growth rarely will occur in soybean under moderate drought stress at reproductive growth phases.

Management practices that leave low amounts of residue on the soil surface or cause compaction can reduce soil water infiltration rate. Excessive or poorly timed tillage can cause soil compaction and increase water runoff from high intensity storm events. Reduced compaction and increased water infiltration rate can increase soil water content, nitrogen fixation, and soybean yield, particularly during growing seasons with less than adequate precipitation.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Quickveyor

Made of high quality 304 stainless steel, the Quickveyor is one of the strongest trailers on the market. It’s belt ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form