Sensors determine in-season fertilization needs

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Farmers on the northern Plains continue to adopt precision agriculture technology and management practices.

In-field crop sensors are one of the new technologies farmers are using to help manage nitrogen fertilizer applications, particularly in corn and wheat. In-field sensors are used to apply variable rates of fertilizer across fields to maximize yields.

“This technology has the potential to increase yields by increasing nitrogen efficiency and, at the same time, protecting the environment,” says John Nowatzki, North Dakota State University Extension Service agricultural machine systems specialist. “For example, variable-rate fertilization gives farmers the option of decreasing nitrogen applications in areas with shallow aquifers, which reduces the potential for water contamination from nitrogen leaching.”

Crop sensors are mounted directly on the fertilizer application equipment and then coupled with variable-rate controllers. This allows farmers to vary fertilizer application rates to growing crops. Applying fertilizer to growing crops allows farmers to make split applications.

“In many cases, producers apply two-thirds of the recommended nitrogen fertilizer at or prior to planting and then apply the remainder as needed during the growing season,” Nowatzki says. “Farmers also can use in-field sensors to accurately estimate crop yield and get information they can use to make management decisions, such as whether or not to apply fungicides or insecticides. Crop sensors simplify the remote sensing process by transferring data directly to the computer on the tractor or fertilizer applicator in real time.”

Crop sensors function by measuring the amount of light waves that are absorbed and reflected by the plant leaves. The sensors estimate plant health and vigor by focusing light on plants and then comparing the amount of specific light waves that are absorbed by the leaves with other light waves that are reflected off the leaves.

The resulting comparisons are referred to as vegetative indices. The normalized difference vegetative index (NDVI) is the index most commonly used in remote sensing of agricultural crops. The NDVI compares the amount of red light absorbed by plants with the amount of near infrared light reflected off plants. Healthy green leaves absorb more red light than leaves that are lighter green.

Commercial in-field crop sensors use different methods to determine how much nitrogen fertilizer to apply in each area of a field. Some systems require farmers to apply ample fertilizer on a test strip in a field, which often is called a nitrogen-rich strip. The operator then drives over that area so the computer controller in the tractor can compare each area of the field with the nitrogen-rich strip.

Other systems recommend operating the sensors over representative areas of each field and making the rate decision based on average sensor readings.

Commercially available in-field sensors include Ag Leader’s OptRx, Topcon’s CropSpec, Trimble’s GreenSeeker and Holland Scientific’s Crop Circle. Each company has unique sensors, mounting techniques and methods of determining plant nutrient requirements. Current crop sensors focus on crop nitrogen needs.

Some companies recommend using one sensor for each 10-foot section of application width and mounting the sensors on the applicator booms, while others use only two sensors mounted on top of the tractor cab. The cost of each system ranges from $10,000 to $20,000.

“The results of in-field sensor research generally indicate that crop producers will use less nitrogen fertilizer to reach their goals,” Nowatzki says. “Farmers also can use this technology to advance management practices designed to maximize yields. In-field sensing technology complements in-season fertilization practices by allowing farmers to more accurately apply only the needed amount of fertilizer at each field location.”

Three NDSU Research Extension Centers are including in-field crop sensor presentations in their field day tours this summer. Nowatzki will be presenting information on in-field sensor technology at the Hettinger REC field tour on July 10. Walt Albus, NDSU research agronomist at the Oakes Irrigation Research Site, will present similar information at the NDSU Agronomy Seed Farm field tour on July 16 and at the Williston REC field tour on July 24.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (1) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left

Bob Miller    
Colorado  |  July, 10, 2012 at 07:44 AM

This is an interesting article, but needs to be retitled. Only crop sensors for nitrogen management are mentioned, and only nitrogen sensors have been taken developed for the field. Currently there are no sensors for P, K, S, or micro nutrients. As N is key to to chlorophyll a crop reflectance sensor is practical. For the others you still need to soil and/or tissue test.


Aluminum Grain Trailers

Maurer Manufacturing offers a complete line of high quality aluminum grain trailers. Manufactured in Spencer, Iowa, Maurer aluminum grain trailers ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form