Nutrient deficiency symptoms; don’t wait until you see them

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Plant nutrient deficiency symptoms begin to appear when one of the essential nutrients is lacking. Sometimes deficiencies appear early in the growing season when soils are cold or wet, and when root activity is low. Deficiencies are also commonly observed later in the season when the soil cannot satisfy the high nutrient demand of a rapidly growing crop. Whether the deficiency is caused by poor root uptake or low nutrient-supplying power of the soil, proper management practices can help alleviate these problems.

Deficient plants do not initially show any obvious symptoms of nutrient shortage other than slower growth, which can also be due to many factors. In the case of a mild deficiency, plants may never show a visual symptom except slow growth and reduced yield.

Nutrient deficiency causes a disruption in any number of essential metabolic processes within the plant. Crops mature unevenly because deficiencies rarely occur uniformly across entire fields. This leads to lower yield, harvesting difficulties and poorer crop quality. And as previously stated, this can all occur without diagnostic symptoms appearing.

When deficiency symptoms become noticeable, severe stress is already occurring and steps should be considered to overcome the problem, if it is practical and economical to do. The effects of other stresses such as drought and pests can complicate diagnoses. Another problem is that not all deficiencies produce clear-cut symptoms. Then there is the possibility of multiple deficiencies. The most severe deficiency may be manifested first. Knowing which nutrients are mobile or immobile within the plant is helpful in pinpointing the cause of the deficiency symptom. Diagnosing symptoms also requires understanding of specific crop colors and markers. It is worth noting that some crops are more susceptible to visible symptoms than others.

Plant analysis (tissue testing) is useful for diagnosing specific nutrient deficiencies as they arise. It is best when nutrient concentrations in deficient plants growing in problem areas are compared with healthy plants to identify the differences. It is also helpful to collect soil samples for analysis from the two areas at the time the plant samples are collected.

Tissue testing also is valuable for monitoring plant health during the season to verify that nutrient concentrations do not drop below nor exceed established critical values. Guidelines have been developed for many crops for what the appropriate nutrient concentrations should be during various growth stages. Supplemental fertilization should be considered if the concentrations fall below these established thresholds.

Pre-season soil testing should also be part of a strategy for preventing nutrient shortages. In addition to helping avoid plant stress, soil analysis will allow decisions to be made that will avoid over or under application of fertilizer and resulting economic inefficiency.

The International Plant Nutrition Institute (IPNI) has a large database of nutrient deficiency images that is continually growing. Visit the website at: http://media.ipni.net. Additionally, a collection of over 500 of our best plant nutrient deficiency photos is available for purchase at http://ipni.info/nutrientimagecollection. A condensed version of this collection is available as an app for iPhones and iPads at http://www.ipni.net/article/IPNI-3273.

When nutrient deficiency symptoms appear, first act quickly to diagnose the problem and then make plans to correct it and to avoid having them reoccur in the future.


Prev 1 2 Next All



Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Tube Series (TS) Conveyors

USC’s Tube Series Conveyors combine the gentleness of the signature Seed Series with the traditional stability of a tube-style conveyor, ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form