First results from Illinois soil N monitoring project

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

The first results from a project to sample soil this fall to see how the dry growing season and low corn yields affected nitrogen levels are now available, said University of Illinois crop sciences professor Emerson Nafziger.

One of the reasons for conducting the study was to see how much nitrogen is in the soil now to estimate the likely nitrogen loss over the winter and early spring.

"November was relatively dry in Illinois, and there have been few reports of tile lines running," he said. "Now that soils have cooled down, the nitrogen, mostly in the form of nitrate, that is in fields most likely will stay in the soil until and unless tile lines run, when we can expect some of it to exit in tile drainage water."

The second reason was to estimate how much nitrogen is available to next year's crop, especially if corn is planted in the same fields.

"It's typical for some loss to take place if we have normal precipitation from fall to early spring, but if this winter is dry, some of the nitrogen there now should be available for next year's crop," Nafziger explained. "We can't know how much will be there in the spring without taking soil samples at that time, preferably close to planting."

Many people volunteered to take samples. Participants were asked to take 0- to 1-foot and 1- to 2-foot samples at a single site. Site information, including how much nitrogen had been applied in 2012 and what the yield was, was sent with the samples, which were tested for both nitrate and ammonium. About 130 sites have been sampled to date in the U of I part of this project.

Nearly all of the samples were taken following corn in 2012, many from fields where 2012 yields were low due to dry weather. Previous sampling work, while not as comprehensive as this study, has typically shown nitrate-N levels of less than 10 ppm.

Although a large number of samples came from central Illinois, there was a good distribution from east to west. Average nitrate-N levels in the top foot of soil were 26, 16, and 18 ppm in northern, central, and southern Illinois, respectively, and ranged from near zero to 89 ppm. The 89 ppm sample, from a field in the northern part of the state with a reported yield of 175 bushels per acre, was the only one with a value above 50 ppm and is probably an outlier.

The data from the sampled fields reflect the dry growing conditions over much of the state in 2012. Some of the fields in southern Illinois yielded little or nothing, while several fields in central and northern Illinois yielded from 180 to 200 bushels per acre.

Average nitrate-N levels in the 12- to 24-inch samples were 16, 12, and 18 ppm in northern, central, and southern Illinois, respectively. These values are as high as those in the top foot of soil in southern Illinois and not much less than in the top foot in central Illinois.

The weighted average of nitrate-N in the top 2 feet of all fields sampled was 136 pounds of nitrogen per acre. Nafziger said that, while the sampled fields probably do not accurately represent all fields in Illinois, 12 million acres of corn with 136 pounds of nitrogen in the top 2 feet indicates that some 800,000 tons of "labile" (able to move and be taken up by plants) nitrogen are in Illinois fields now.

As expected when water limits yields, the amount of nitrogen used in a field did not seem to affect its corn yield. A few fields with very high nitrogen rates had low yields. The association between the amount of nitrogen applied and the amount present in the fall was, however, not strong. Low yields were not associated with high amounts of leftover nitrogen.

Finally, nitrogen removal in the grain was estimated by subtracting 0.75 pounds of nitrogen per bushel from the amount of nitrogen applied as fertilizer. The results were not helpful for predicting the amount of remaining nitrogen.

How can it be that the combination of low yields due to dry conditions and high application rates of nitrogen fertilizer seem unrelated to the amount of soil nitrogen found after the season?

"This shows how complex the nitrogen interactions are in the soil," Nafziger said. "In a year such as 2012, there is little nitrogen loss, uptake ends early as the crop stops taking up water, and fall rainfall can produce new flushes of mineralized nitrogen long after crop uptake stops. We think that soil moisture was the main factor determining both yield and the amount of nitrogen in the soil and that these two factors had independent effects in the tough year that was 2012."

Nafziger hopes that fields sampled this fall can be sampled in the spring of 2013 to see how much nitrogen remains. Where corn in 2013 will follow corn in 2012, nitrate-N present at planting should be available to the 2013 crop unless high loss conditions prevail after planting.
The Council for Best Management Practices provided funding for this project.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (1) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left

Ed Beason    
SE Kansas  |  January, 08, 2013 at 06:54 AM

Often we've found VERY significant levels of the ammonium form of nitrogen in samples under these same conditions. As Dr Natziger stated, nitrogen interactions are complex. The way N waxes, wanes and morphs in the soil, checking some of these samples for ammonium miglht be enlightening.


Kinze 1500 Grain Cart

The Kinze 1500 Grain Cart is engineered for speed and reliability required of custom harvesters. Load up to 1500 bushels ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form