Manganese Fertility in Soybean Production

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Source: Keith Diedrick, Area Agronomist, Pioneer Hi-Bred

Manganese (not to be confused with the macronutrient magnesium) is one of the 16 elements essential to plant growth and production. Since manganese is needed in relatively small amounts compared to elements such as nitrogen and potassium, it is considered a micronutrient.

Manganese has several very important roles in the plant, including functioning as an activator or cofactor of at least 35 enzymes. Manganese is part of the structure of an important antioxidant (superoxide dismutase) that protects plant cells by deactivating free radicals which can destroy plant tissue. Manganese plays vital roles in photosynthesis, as a structural component of the photosystem II water-splitting protein. It also serves as electron storage and delivery to the chlorophyll reaction centers.

Manganese is sufficient in most soils to supply crop needs, but may be deficient in dry conditions, sandy soils, high organic matter soils (especially peat and muck), and soils with high pH. When deficient, manganese can be supplied by fertilizer in several forms by foliar and soil-applied methods.

Of all micronutrients, manganese tends to be the most common deficiency noted in soybean production. Manganese deficiencies, however, tend to respond positively to remedial treatments of manganese (when they are timely). As with all nutrients, yield responses are attainable only when manganese is deficient and therefore limiting yield. This Crop Insights will describe manganese requirements, deficiency symptoms, soil and plant sampling, and fertilization practices in soybean production.

Chemical Properties and Availability of Manganese in the Soil
Manganese exists in a number of forms in the soil, including soil solution Mn2+, exchangeable Mn2+, organic compounds, various minerals and as other ions. However, the only form known to be plant available is the manganese ion Mn2+ in soil solution. Manganese availability to plants largely depends on soil texture, organic matter, pH and weather conditions.

Soil pH: Manganese is most soluble and therefore available to the plant at a pH of 5 to 7. In alkaline soils (pH above 7.0), manganese may form insoluble compounds, making it unavailable to the plant. For every increase of one pH unit, manganese availability decreases a hundredfold. In very acidic soils, however, manganese can reach toxic levels. Liming soils to appropriate pH can help avoid this situation.

Soil organic matter: Organic matter and manganese ions will combine to form insoluble compounds that are not accessible by plant roots. This reaction is exacerbated by high soil pH.

Soil Aeration and Moisture:
Available manganese is affected by soil aeration and moisture. Waterlogged and anaerobic (or "reducing") environments are conducive to more Mn2+ in solution. In contrast, very dry soils tend to have less Mn2+ in soil solution. Additionally, low moisture conditions will slow the growth and activity of soil microbes that also cycle manganese in the soil.

Weather conditions:
Hot, dry conditions result in less manganese in available form as they typically cause dry soils.

Other Nutrients:
High levels of copper, zinc and iron can reduce uptake of manganese. Conversely, acid-producing fertilizers including ammonium sulfate, MAP and DAP can increase manganese availability. Potassium chloride (0-0-60 potash) also has the potential to increase plant uptake of manganese.

Manganese Deficiency Symptoms in Soybeans
Visual deficiency symptoms include interveinal chlorosis (yellowing between the veins) on the younger leaves, followed by necrosis (brown/black spots of dead tissue) and yield loss if the deficiency progresses.

Areas of deficiencies likely will vary across the field, and since the availability of manganese is tied to soil factors, knowing the field’s history over time can be helpful in diagnosis. Fields or field areas with a history of manganese deficiencies will be more likely to show deficiencies in future soybean crops.

Soil and Plant Analysis for Manganese
Because yellowing of plants can be due to a number of factors (iron, potassium or magnesium deficiency, herbicide or insect injury, soybean cyst nematode damage, poor nodu-lation, etc.), good scouting practices and tissue sampling are often needed to confirm a specific nutrient deficiency. For example, potassium deficiency causes leaf yellowing that may be confused with manganese-deficiency symptoms. Though these symptoms may look the same from a distance, careful scouting could detect differences in the yellowing pattern. The treatments for these two deficiencies are very different – be sure to scout and diagnose carefully for proper treatment. Plant tissue analysis is the usual method to confirm a suspected manganese deficiency, as soil testing tends to be much less predictive.

Plant Sampling

The standard plant sampling technique for soybeans is to take the newest trifoliate leaves that are fully opened (keeping in mind that manganese is not very mobile and new leaves will show deficiencies). Randomly sample plants to get a representative sample of the affected area, though consider a separate sample of non-affected plants to make a comparison. When sampling leaves, remove the petiole (or stem-like structure that holds the leaf to the soybean stem) so just leaf tissue is represented in the sample. Be sure to follow your diagnostic laboratory's specific sampling and shipping procedures.

Plant Tissue Test Interpretation/Fertilizer Recommendations

Typically, plant tissue contains from 20 to 500 parts per million (ppm) of manganese. A level of 21 or fewer ppm is generally considered deficient, though some recent research shows that deficiencies (and response to fertilizer) are some-times noted at 30 to 40 ppm. Also, some varieties of soybeans seem to be more sensitive to manganese deficiencies than others. Since relatively small quantities are necessary for treatment, foliar applications of manganese could be used. Some fields with a known history of deficiencies (e.g., muck soils) may require multiple applications and soil amendments of manganese.

Manganese Fertilizer Sources and Application Choosing a Source of Manganese
Generally, "blanket" application of any nutrient without con-firmation of a deficiency is not recommended. Applications of manganese to soybeans with sufficient manganese can result in toxic concentrations and yield loss. Once a deficiency is identified and confirmed, a fertilizer source and method then can be determined. There are a few different fertilizer sources of manganese effective for correcting deficiencies. These sources can be grouped as:

  • Inorganic products as salts and oxides — manganese sulfate, manganese chloride and manganese oxide 
  • Organic chelates — Mn-EDTA, Mn-Glucoheptonate, Mn-Citric Acid and others
  • Organic non-chelates (natural organic complexes)

Table 1. Common manganese fertilizer sources.

Manganese Fertilizer

% Manganese


Manganese sulfate (MnSO4 · 4H20) ~ 26 to 28%

Suitable for soil or foliar application, though foliar is preferable to soil application. May chelate glyphosate in tankmix solution and lessen weed control efficacy.

Manganese chloride (MnCl2) 17%

See above.

Manganese oxide (MnO) 41 to 68%

Low solubility. Must be finely ground to be effective in the soil. Not recommended for foliar use.

Synthetic manganese chelates (Mn-EDTA and others) 5 to 14%

Preferred foliar fertilizer source because of lower rates and decreased interactions with tankmix partners such as glyphosate (EDTA seems to be the least detrimental). Not recommended for soil application.

Organic residues and manure 0.01 to 0.05%

Manure and other organic residues contain a number of micronutrients, including manganese.

Method of Application
Soil applications of manganese tend not to be very effective as broadcast applications compared to foliar treatments, as soil can render the treatment unavailable in a short period and may not be timely enough for remediating a deficiency in-season.

Foliar applications are the preferred method of supplying manganese to a growing soybean crop. Usually 0.2 to 0.5 pounds of manganese per acre is sufficient per application. If a grower is not tankmixing manganese with glyphosate, the manganese sulfate form will work as well as the chelated forms for foliar feeding, so cost per pound can be the deciding factor in product choice.

Special Considerations When Tankmixing Manganese With Glyphosate

Some growers may decide to include a manganese product with glyphosate for post-emergent weed control in glyphosate-tolerant soybeans, saving application costs for two products. In the past, studies have shown that mixing glyphosate with micronutrients and other herbicides can cause antagonism, that is, loss of effectiveness in controlling weeds and reduced absorption of the nutrient. This is a result of "hard" water interacting with glyphosate molecules. "Hard" water typically describes water containing a high level of metals, including the familiar calcium, magnesium, and iron found in well water, but also metal nutrients that might be added for fertilizer purposes (like manganese). Glyphosate will interact with (or chelate) these metals, and reduce the effectiveness of weed control and nutrient absorption. To avoid this interaction, a grower can either:

1) Spray the products separately (glyphosate application followed by manganese seven to 10 days later), or

2) Use spray-grade ammonium sulfate (AMS) in the carrier for tankmixing with a chelated form of manganese (EDTA preferred).

Ammonium sulfate is used to "soften" the carrier water before glyphosate and manganese are added to the tank. Refer to the glyphosate label for the appropriate amount of AMS (usually 8.5 to 17 pounds per 100 gallons of carrier). Manganese EDTA is the form of manganese that is least antagonistic when tankmixed with glyphosate.

When mixing products for application, the mixing order is important to assure the carrier is "conditioned" before the potentially chelating products are added to the tank. Add products to the tank in this order:

Step 1. Add water
Step 2. Add AMS
Step 3
. Add glyphosate
Step 4
. Add manganese EDTA

As with any product, carefully read all label directions before proceeding.

References and Further Reading
Bernards, M. L., K.D. Thelen, and D. Penner. 2005a. Glyphosate efficacy is antagonized by manganese. Weed Technol. 19:27–34.

Camberato, J., K. Wise, and B. Johnson. 2010. Glyphosate — manganese interactions and impacts on crop production: the controversy. Purdue University Extension News and Notes [Online].

Diedrick, K.A., R.W. Mullen, and M.M. Loux. 2010. Foliar manganese on glyphosate tolerant soybeans. Crop Observation and Recommendation Network newsletter. 2010-05, Ohio State Univ., Columbus, OH.

Hartzler, R. 2010. Glyphosate-manganese interactions in Roundup Ready soybean. Integrated Pest Manage. News. Ames, IA.

Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 2005. Soil fertility and nutrient management: an introduction to nutrient management. 7th ed. Pearson/Prentice Hall. Upper Saddle River, NJ.

Lentz, E.M., K.A. Diedrick, and R.W. Mullen. 2009. Yellow soybeans — what to do. Crop Observation and Recommendation Network newsletter. 2009-21, Ohio State Univ., Columbus, OH.

Rehm, G. 2010. Roundup and manganese for Minnesota soybeans. Minnesota Farm Guide:Univ. of MN Ext. Svc. [Online]:

Taiz, L., and E. Zeiger. 2006. Plant physiology. 4th ed. Sinauer Associates, Sunderland, MA.

Thelen, K.D., E.P. Jackson, and D. Penner. 1995. The basis for the hard-water antagonism of glyphosate activity. Weed Sci. 43:541–548.

Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...

Related Articles

Comments (0) Leave a comment 

e-Mail (required)


characters left

Ranco Bucket Elevators

Ranco Bucket Elevators are built to last, with thousands of bucket elevators in operation around the world. Quality 304 stainless ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form