Tips for evaluating corn hybrid demo plots

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

This is the time of year when many farmers visit and evaluate hybrid demonstration plots planted by seed companies and county Extension personnel, among others. When checking out these plots, it’s important to keep in mind their relative value and limitations. The much later than normal corn plantings in 2011 may result in hybrid performance and responses to various to treatments (e.g. seeding rate, fertilizer rates) that are not be representative of a typical growing season - when crops are planted much earlier.

Demonstration plots may be useful in providing information on certain hybrid traits, especially those that are usually not reported in state corn performance summaries. The following are some hybrid characteristics to consider while checking out hybrid demo plots.

PLANT/EAR HEIGHT. Corn reaches it maximum plant height soon after tasseling occurs. Remember that although a big tall hybrid may have a lot of "eye appeal," it may also be more prone to stalk lodging in the fall. Unless your interest is primarily silage production, increasing plant height should not be a major concern. Generally later maturity hybrids are taller than earlier maturity hybrids. Big ears placed head high on a plant translate to a high center of gravity, predisposing a plant to potential lodging. The negative effects of stalk rot on stalk lodging in the fall may be worsened by high ear placement. Plots that have been subjected to early season (V7 or earlier) defoliation caused by hail or frost often have lower than normal ear height.

STALK SIZE. Generally speaking, a thicker stalk is preferable to a thinner one in terms of overall stalk strength and resistance to stalk lodging. As you inspect a test plot, you will see distinct differences among hybrids for stalk diameter. However, also check that the hybrids are planted at similar populations. As population increases stalk diameter generally decreases. Also keep in mind that uneven emergence and development, which affected many corn fields this year, may make such comparisons difficult because late emerging plants are “spindlier”.

DISEASES. During the grain fill period, leaf diseases can cause serious yield reductions and predispose corn to stalk rot and lodging problems at maturity. Ear rots can also impact yield and grain quality. The onset of leaf death shortly after pollination can be devastating to potential yield, since maximum photosynthetic leaf surface is needed to optimize grain yield. Hybrids can vary considerably in their ability to resist infection by these diseases. Demonstration plots provide an excellent opportunity to compare differences among hybrids to disease problems that have only occurred on a localized basis. Look for differences in resistance to northern corn leaf blight, gray leaf spot, and diplodia ear rot. Symptoms of these diseases and others are available online at the OSU Field Crop Disease Website (http://oardc.osu.edu/ohiofieldcropdisease/t01_pageview2/Home.htm)

Check to see if foliar fungicides have been applied and what crop rotation has been followed. Typically you’ll encounter more severe foliar disease problems in no-till, continuous corn.

STALK ROTS. Hybrids will likely differ widely when faced with strong stalk rot pressure. Begin checking plants in late August or about 6 weeks after pollination by pinching lower stalk internodes with your thumb and forefinger. Stalks that collapse easily are a sure indicator of stalk rot. Remember that hybrids with thicker stalks may be in plots having thin stands.

LODGING. Perhaps as important as stalk rot resistance is the stalk strength characteristics of a hybrid. Sometimes, superior stalk strength will limit the adverse effects of stalk rot. If your variety plot is affected by stalk rot in late August and early September, evaluate stalk lodging of the different hybrids. Most agronomists characterize plants with stalks broken below the ear as ‘stalk lodged’ plants. In contrast, corn stalks leaning 30 degrees or more from the center are generally described as ‘root lodged’ plants; broken stalks are usually not involved. Root lodging can occur as early as the mid-to- late vegetative stages (as it did this year) and as late as harvest maturity. Both stalk and root lodging can be affected by hybrid susceptibility, environmental stress (drought), insect and disease injury.

Root lodging may be associated with western corn rootworm injury. However, much root lodging in Ohio occurs as the result of other factors, i.e. when a hybrid susceptible to root lodging is hit by a severe windstorm, like those we experienced in mid-July. A hybrid may be particularly sensitive to root lodging yet very resistant to stalk lodging. A cornfield may exhibit extensive root lodging in July but show little or no evidence of root lodging at harvest maturity in September (except for a slight “goose necking” at the base of the plant). This year some of our plots were subjected to more than one wind storm that caused root lodging. Some hybrids showed less recovery following the second wind storm, especially when plant populations exceeded 34-35,000 plants/A.

TRANSGENIC TRAITS: Because damage from European corn borer (ECB) and western corn rootworm (RW) can be very localized, strip plot demonstrations may be one of the best ways to assess the advantages of ECB Bt and RW Bt corns. The potential benefit of the ECB Bt trait is likely to be most evident in plots planted very early or very late; the potential benefit of the RW Bt trait is likely to be most evident in plots planted following corn or in a field where the first year western corn rootworm variant is present.

HUSK COVERAGE/EAR ANGLE. Hybrids will vary for completeness of husk coverage on the ear as well as tightness of the husk leaves around the ear. Ears protrude from the husk leaves are susceptible to insect and bird feeding. Husks that remain tight around the ear delay field drydown of the grain. Hybrids with upright ears are often associated with short shanks that may be more prone to ear and kernel rots than those ears that point down after maturity. This relationship received considerable attention in 2009 when Gibberella ear rot problems were widespread across the Eastern Corn Belt. However, we’ve observed that differences in ear “orientation” among hybrids can be strongly influenced by growing season and plant density. Also, under certain environmental conditions, some hybrids are more prone to drop ears, a major problem if harvesting is delayed.

The following are some additional points to consider during your plot evaluations:

1. Field variability alone can easily account for differences of 10 to 50 bushels per acre. Be extremely wary of strip plots that are not replicated, or only have "check" or "tester" hybrids inserted between every 5 to 10 hybrids. The best test plots are replicated (with all hybrids replicated at least three times).

2. Don't put much stock in results from ONE LOCATION AND ONE YEAR, even if the trial is well run and reliable. This is especially important this year given the tremendous variability in growing conditions (e.g. planting dates) and crop performance across the state. Don't overemphasize results from ONE TYPE OF TRIAL. Use data and observations from university trials, local demonstration plots, and then your own on-farm trials to look for consistent trends.

3. Initial appearances can be deceiving, especially visual assessments! Use field days to make careful observations and ask questions, but reserve decisions concerning hybrid selection until you've seen performance results.

4. Walk into plots and check plant populations. Hybrids with large ears or two ears/plant may have thin stands.

5. Break ears in two to check relative kernel development of different hybrids. Use kernel milk line development to compare relative maturity of hybrids if hybrids have not yet reached black layer. Hybrids that look most healthy and green may be more immature than others. Don't confuse good late season plant health ("stay green") with late maturity.

6. Differences in standability will not show up until later in the season and/or until after a windstorm. Pinch or split the lower stalk to see whether the stalk pith is beginning to rot.

7. Visual observations of kernel set, ear-tip fill, ear length, number of kernel rows and kernel depth, etc. may provide some approximate basis for comparisons among hybrids but may not indicate much about actual yield potential. This year we’ve seen differences in tip kernel abortion (“tip dieback” or “tip-back”) among hybrids and heard reports of “zipper ears” (missing kernel rows). Even if corn ear tips are not filled completely, due to poor pollination or kernel abortion, yield potential may not be affected significantly, if at all, because the numbers of kernels per row may still be above normal.

8. Find out if the seed treatments (seed applied fungicides and insecticides) applied varied among hybrids planted, e.g. were the hybrids treated with the same seed applied insecticide at the same rate? Differences in treatments may affect final stand and injury caused by insects and diseases.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Declining Weigh Blending System

Ranco Declining Weigh (DW) is the standard in fertilizer blending because of the speed and accuracy of the blending process. ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form