Considerations for corn planted under wet conditions

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

What should producers expect if they planted corn into soils that were too wet, and what can they do to minimize any problems?

It is best, of course, to allow time for the soil to dry adequately before tillage or planting operations if at all possible. Wet conditions will make the soil more susceptible to compaction. Tilling some soils when they are too wet can produce large, persistent clods, complicate planting, reduce herbicide effectiveness, and destroy the seedbed. Also, compaction can occur in the seed furrow itself, restricting proper root development (also diminishing nutrient accessibility) and early plant growth.

If soils remain or become unusually wet after the corn has emerged, corn may look sickly for a while. Saturated soils inhibit root growth, leaf area expansion, and photosynthesis because of the lack of oxygen and cooler soil temperatures. Yellow leaves indicate a slowing of photosynthesis and plant growth. Leaves and sheaths may turn purple from accumulation of sugars if photosynthesis continues but growth is slowed.

Corn plants can recover with minimal impact on yield if the plants stay alive and conditions return to normal fairly quickly (early during the growth period). Although root growth can compensate to some extent later in the season, a saturated profile early in the season can confine the root system to the top several inches of soil, setting up problems later in the season if the root system is inadequate to extract needed water from lower in the profile.

If weather conditions persist for more than a week, corn emergence will be delayed and seedling will be more vulnerable to the presence of insects and diseases. Uneven corn stands likely will be greater when planting in cold and wet soils. This situation will be directly affecting the plant-to-plant uniformity, which could have an impact on the potential yield.

Saturated soils can also cause loss of nitrogen fertilizer by either denitrification (loss of nitrogen to the atmosphere) or leaching (movement of nitrogen beyond the rooting zone). For denitrification to occur, the soil doesn’t need to be completely saturated. Denitrification can also occur at 85-90% of the pore space filled with water. Nitrogen in the nitrate (NO3) form is needed for these losses to occur. Therefore a combination of fertilizer source, application time and the use of nitrification inhibitors can reduce leaching and denitrification.

Corn may respond to in-season nitrogen applications if a large portion of early-applied nitrogen is lost to these processes. Keep an eye out for nitrogen deficiency symptoms on fields that have been saturated for long periods. It may not be a bad idea to apply a strip or two of a high rate of nitrogen in those fields as soon as possible to serve as a fully-fertilized reference point.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Pacesetter Grain Hopper

The Pacesetter Gain Hopper features original and innovative ideas like the patented RollerTrap™, the industry’s easiest to open and maintain trap ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form