New method to measure soybean rhizobia

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Soil-borne rhizobia bacteria form a mutually beneficial relationship with legumes, during which the rhizobia convert atmospheric nitrogen into plant-available nitrogen in exchange for carbohydrate energy from the plant. This process is called biological nitrogen fixation and is a major player in the global nitrogen cycle, facilitating greater agricultural productivity with less fertilizer input.

Soybean, a legume planted on nearly 30 million ha annually in the United States, can fulfill most of its nitrogen requirements via biological nitrogen fixation. Many commercial, seed-applied rhizobia inoculants are available to soybean producers to encourage biological nitrogen fixation and increase yield, but scientists have found mixed results regarding the effectiveness of these products.

To begin researching the predictability of a positive yield response to seed inoculation, a team of scientists at the University of Wisconsin–Madison determined a new method for the quantification of soybean-associated rhizobia in the soil. The method is described in the November–December 2010 issue of Crop Science.

Soil samples were collected in April of 2009, and the number of rhizobia was estimated with the most probable number (MPN) technique. This method involves inoculation of soybean plants with a dilution series of the soil sample. Based upon the number of plants that become infected with rhizobia, an estimate of the population size in the soil can be made according to previous research.

This method has been widely used for more than 50 years but requires large amounts of time to process one sample (up to six weeks). To improve efficiency, the scientists at the University of Wisconsin–Madison have taken a genetic approach.

From the soil, they are able to quantify a gene that is specific to the rhizobia associated with soybean using quantitative polymerase chain reaction (qPCR).

“PCR technology was conceived approximately 25 years ago and has many medical, food safety, and research applications,” explains Branden Furseth, the graduate student who conducted the study. “This is just one more way in which the technique can be used to further our understanding of the world around us.”

The same samples were analyzed using qPCR, and the two methods were highly correlated with one another, allowing the qPCR technique to be used as a predictor of the MPN estimation. The qPCR technique is very high throughput and has accelerated the team’s field research during the past two seasons. By investigating how soybean yield responds to the population of rhizobia in the soil, the researchers hope to reveal a response threshold for the use of inoculants, which could be used for product use recommendations and diagnostic testing for producers.

“Based on soil sample analysis, we want to have the ability to predict the soybean yield response to seed inoculation with rhizobia,” Furseth says. “A pre-plant soil rhizobia test for producers would increase the efficiency of using these products.”

Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...

Comments (1) Leave a comment 

e-Mail (required)


characters left

Nebraska  |  March, 06, 2014 at 04:26 PM

Any chance this methodology could be used on rhizobium of other legume crop species? Anyone know?

1325 Bushel Grain Cart

Equipped with a 22” computer balanced auger with 5/16” flighting,the unloading speed is 50% faster than smaller grain carts with ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form