Chitin lipo-chitin recognition by plants

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Plants are sedentary and, therefore, need means to measure environmental conditions and respond to threats or stressful change. Our understanding of how plants recognize and respond to stress (e.g., through membrane bound receptors) has advanced considerably in recent years. However, much less is known about how these signaling pathways are integrated within the plant to effect needed changes in physiology, growth and development.

Research over the past decade has shown that chitooligosaccharides (COs) and modified CO (e.g., lipo-chitooligosaccharides, LCOs) induce a variety of responses in plants. For example, COs, released from the cell walls of plant pathogenic fungi represent examples of  Pathogen (Microbe)-Associated-Molecular-Patterns [P(M)AMP]; a group of molecules that play roles in the induction of innate immunity responses in both plants and animals.

In contrast, lipo-chitoolilgosaccharide (LCO) Nod signals, produced by rhizobia, are the key morphogens that induce the formation of symbiotic nodules on legume roots. Numerous recent studies provide strong support for our original hypothesis that “lipo-chitooligosaccharide (LCO) Nod signal recognition pathways likely evolved from more ancient chito-oligosaccharide (CO) recognition pathways that appear to be found in all plants” (Zhang et al., 2007). 

Indeed, one central question in our work is how plants recognize very similar molecules (i.e., CO and LCO), using structurally similar receptors (i.e. LysM receptor-like kinases (Wan et al., 2008), but then respond in distinctly different ways (i.e., innate immunity vs. nodulation, respectively).

However, a variety of other plant responses have also been reported for CO or LCO treatment. For example, LCO addition is known to increase root growth in both soybean and corn, which is the basis for a product (Optimize) based, in part, on patents from our laboratory. The means by which CO and LCO mediate these broad effects is unknown.

Indeed, recent results from our laboratory reveal new levels of complexity in CO signaling. Our long term goal is to elucidate plant CO/LCO perception and signaling pathways that play roles in both plant development and pathogen defense. For example, it is clear that CO addition to plants induces a broad array of responses, including a direct impact on photosynthesis, growth and development. Our research also seeks to understand the molecular mechanism of plant receptor function. Furthermore, our studies are strengthened by their multidisciplinary approach, which combines experimental and computational efforts with biochemistry, genetics and molecular biology.

Selected  publications relating to this research topic:

Zhang, B., K. Ramonell, S. Somerville, and G. Stacey. 2002.Characterization of Early, Chitin-Induced Gene Expression in Arabidopsis Mol. Plant-Microbe Int. 15: 963-970

Wan, Jinrong, Shuqun Zhang, and Gary Stacey. 2004.  Activation of a potential mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol. Plant Pathol. 5(1): 125-135.

Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G and Somerville S. 2005. Loss-of-function mutations in four chitin responsive genes show increased susceptibility to the powdery mildew pathogen, Erysiphe cichoracearum. Plant Physiol. 138: 1027-1036

Libault M, Wan J, Joshi T, Zhang X, Czechowski T, Xu D, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin ligase genes involved in plant defense via chitin signaling. Mol. Plant-Microbe Int. 20: 900-911.

Zhang X-C, Wu X, Findley S, Wan J, Libault M, Nguyen HT, Cannon SB, Stacey G (2007) Molecular evolution of LysM type receptor-like kinases in plants Plant Physiol. 144: 623-636.

Wan J, Zhang X, Ramonell KM, Clough S, Kim S-Y, Stacey M, Stacey G 2008) A LysM receptor-like kinase mediates chitin perception and fungal resistance in Arabidopsis. Plant Cell 20: 471-481.

Wan J Zhang X, Stacey G (2008) Chitin signaling and plant disease resistance. Plant Signaling and Behavior, 3 (10): 831-833

Zhang X, Cannon SB, Stacey G (2009) Evolutionary genomics of LysM genes in land plants. BMC Evol. Boil. 9:183 (3 August 2009)


Prev 1 2 Next All



Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Pacesetter Grain Hopper

The Pacesetter Gain Hopper features original and innovative ideas like the patented RollerTrap™, the industry’s easiest to open and maintain trap ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form