Phosphorus and potassium fertilization tips

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Fabian Fernandez, University of Illinois, offers tips to help answer some of the common questions about fall phosphorus and potassium applications.

Placement. Should P and K be incorporated in the soil with tillage, left on the surface, banded on the surface, or banded deep (4-8 inches) below the surface? All the research I and others have done in the Corn Belt indicates that, for the most part, how you apply P and K does not matter; what is important is that you do apply it, or that you confirm that test levels are adequate for crop production. Deep banding is sometimes suggested because "it makes the nutrient more available," but we have not seen evidence for that being the case. The only time researchers have seen an advantage to deep placement is when soil test levels are low. Concentrating the fertilizer in a band could allow the plant to take P and K from a "hot spot," and the fertilizer has less chance to be fixed in the soil.

However, with adequate test levels, and due to the characteristics of most soils in Illinois, nutrient fixation is not a big problem in the state. Sometimes matching the fertilizer band with the planter provides a crop effect similar to starter fertilizer. Of course, two factors are important to keep in mind: starter effects are not always seen (they normally occur with early planting or when soil conditions are cool and/or wet), and a starter fertilizer effect is more often aesthetic--the crop "looks good" early on, but often that doesn't translate to greater yield.

The use of strip-tillage is increasing in many parts of Illinois. While it is very easy to apply P and K during the strip-till operation, it is not a "requirement" to deep-band the fertilizer then. Some people find it faster and more convenient to broadcast the fertilizer beforehand. One advantage we have seen with deep placement of P is being able to, over time, lower P test levels in the surface layer of the soil without reducing overall fertility of the field.

This reduction can help in minimizing potential P runoff from fields and possibly reducing the negative impact of P loading into bodies of water. Something to keep in mind, though, is that with deep placement of fertilizer, traditional sampling approaches to determine soil fertility might not work as well. I would say that while we have not seen yield advantages to deep placement of fertilizer with strip-till, we have seen a yield advantage compared to a strict no-till system due to the tillage effect. One final point is that if you plan to strip-till this fall, it is better to wait until at least mid-October. Normally by then the heavy rains have passed, and there is less chance for the berm created during the tillage operation to become too mellow by spring.

Annual vs. biennial applications. Is an annual application better than a biennial one? Just as with placement, our research indicates that as long as you apply the needed fertilizer to make sure soil test levels are adequate to supply what the crops will need, no yield benefit hinges on whether the application is done every year or every other year. All that said, we have seen that for biennial applications it is better to apply fertilizer before the corn crop and to have soybean as a residual feeder. Research has shown that planting corn in the second year after fertilization can cause yield reductions, especially in no-till systems. Conversely, soybean yields were not affected in response to the time of fertilization. Even if a biennial application results in saving time and making one less pass over the field, if your experience tells you that your soil does not build up, I would suggest always applying annually.

Fall vs. spring applications. Is it better to apply P and K in fall or spring? Many studies over the years have indicated that both are effective in providing nutrients to the crop, and neither timing is better at increasing nutrient availability. Fall is normally the preferred timing, since typically more time and equipment are available than in the spring planting season. Also, soil compaction is less of a concern in the fall when driving heavy equipment loaded with fertilizer, soils are typically drier than in the spring, and P and K applications combined with tillage operations are more feasible in the fall. One potential drawback for fall application is the fact that the nitrogen accompanying P in MAP and DAP is more susceptible to loss even if applied late in the fall. However, the amount of N present in these applications is not very high (typically no more than 30-35 lb N/acre), and the benefits of a fall application typically outweigh the potential for any small N losses.

Phosphorus and potassium for continuous corn. Do I need to manage P and K differently in a corn-corn than a corn-soybean cropping system? Recently there has been interest in increasing corn acres. In Illinois that most often means putting soybean acres that have been in rotation with corn into a continuous-corn or a corn-corn-soybean rotation. If P and K are at adequate levels, there is no need for significant change in the short term when going into a rotation with more corn. If soil test levels are below recommendations, it is always advisable to establish a fertilization program that will bring them up to sufficiency ranges. In situations of short tenure of the land--where a build-up approach might not be possible--band application at maintenance levels will provide the best management approach.

If you are planning to make a long-term commitment to more corn, note that, overall, corn can remove more P and less K than soybean. Your fertilization plans should be adjusted accordingly. As an example, a corn crop of 180 bushels an acre removes about 77 pounds of P2O5 and 50 pounds of K2O per acre, while a soybean crop of 50 bushels an acre removes about 42 pounds of P2O5 and 65 pounds of K2O per acre. Assuming constant yields, over two years a corn-corn rotation will remove 35 pounds of P2O5 per acre more than a corn-soybean rotation but 15 pounds of K2O per acre less. (This of course assumes nutrient removal only in grain. If stover is removed as well, additional nutrients will be removed. For details on nutrient removal in stover see "Removing Crop Residue Removes Nutrients from the Field.")

The single most important thing to know before deciding placement method and when and how much phosphorus and potassium to apply is the test levels of the soil. To find these out, there is no substitute for a regular (every four years) soil sampling program.--

Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...

Comments (0) Leave a comment 

e-Mail (required)


characters left

LPV Seed Treater

The LPV Seed Treater has set a new standard boasting three configurable weighing methods for any-sized operation, a standard 42” ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form