Brazilian citrus greening genome could aid Florida

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

A University of Florida researcher has mapped the DNA genome of a new strain of citrus greening that could further threaten Florida’s beleaguered $9 billion citrus industry. Knowing the genetic makeup of the various strains is critical to finding a cure. 

Dean Gabriel, a plant bacteriology specialist with UF/IFAS, helped sequence and map the genome of the most prevalent form of the disease in Florida, and now he and colleagues have done the same for a new strain of the disease discovered in Brazil.

There is no cure for either strain, although researchers believe that knowing the genetic makeup of the disease is critical to finding one. Gabriel said by having that “roadmap” of the bacteria genome, they will be certain there are no surprises in the Brazilian species, which has now been found in Texas. In addition, the mapping should help guide them to improvements in control methods and toward more usable genes and treatments.

“What the genome does, it lets you know everything that the organism has and doesn’t have in its artillery for offense and defense—and it lets you design a strategy to control it,” Gabriel said.

Researchers often liken having the genetic sequence for an organism to having its list of parts.

“Having all the genetic information is like having a detailed roadmap of the organism,” said Jackie Burns, director of the UF/IFAS Citrus Research and Education Center in Lake Alfred.

Citrus greening was first discovered by farmers in China in 1911 and made its first appearance in Florida in 2005. It is spread by a tiny insect called the Asian citrus psyllid that feeds on the trees, leaving bacteria that starve the tree of nutrients. Infected trees produce fruits that are unsuitable for sale as fresh fruit or for juice and most die within a few years. The disease has already affected millions of citrus trees in North America.

Gabriel’s team’s work will be outlined in a research paper that will be published in February in the journal Molecular Plant-Microbe Interaction. The genome map is already available online, at GenBank.

To map the bacteria’s DNA genome, Gabriel’s Brazilian colleagues first diced up and crushed tissue from the veins of infected citrus trees where the organism was most highly concentrated.  They used chemicals to extract DNA and purified it. The team had to separate the tree DNA from that of the bacterium.

DNA comprises four nucleotides, which fall into an order to encode genes specific to an organism. Gabriel likened it to examining beads on a necklace: The beads come in only four colors, and the color sequence determines each gene – in this case, the DNA greening “necklace” held 1,195,201 beads, or 1,044 genes.

To obtain the nucleotide sequence from the purified bacterial DNA, they used state-of-the-art sequencing machines at the UF Interdisciplinary Center for Biotechnology Research.

The research was funded by the Citrus Research and Development Foundation Inc., an affiliate of UF’s Institute of Food and Agricultural Sciences. 

In the battle against greening, UF/IFAS researchers have tried everything from working on ways to eradicate the psyllid to grafting trees that show better resistance to greening.

Frederick Gmitter, a citrus breeder and faculty member at IFAS’ Citrus REC, said his research team has found new experimental rootstocks that seem to be supporting healthier trees – even ones with citrus greening.  In addition, his team is studying “escape trees,” which are trees that remain unscathed, even when surrounded by thousands of infected tress.

Prev 1 2 Next All

Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...

Comments (0) Leave a comment 

e-Mail (required)


characters left

Aluminum Grain Trailers

Maurer Manufacturing offers a complete line of high quality aluminum grain trailers. Manufactured in Spencer, Iowa, Maurer aluminum grain trailers ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form