Two approaches for optimizing water productivity

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article


U.S. Department of Agriculture (USDA) researchers in Bushland, Texas, are helping farmers make the most of their water supplies in a region where they depend on the Ogallala Aquifer, a massive underground reservoir under constant threat of overuse.

Steve Evett, Susan O'Shaughnessy and their colleagues in the Agricultural Research Service (ARS) are developing soil, water and plant stress sensors and automated irrigation systems designed to irrigate fields only when absolutely necessary. ARS is USDA's principal intramural scientific research agency.

The researchers are working on two complementary approaches. One system applies water based on crop water stress levels detected by wireless sensors mounted on the pipelines of above-ground commercial irrigation systems. The sensors determine variable water needs as the irrigation system moves across a field.

In the other approach, sensors in the soil trigger irrigation based on soil water content. That technology is designed for urban sites and is being adapted so that it will work in agriculture.

The effectiveness of the aboveground system has been verified in numerous studies. In one, the researchers cultivated early- and late-maturing sorghum for two years and used 16 prototype wireless sensors on a center-pivot irrigation system to monitor crop canopy temperatures as the system moved across the fields. Instruments recorded weather data as the system moved. The researchers compared its effectiveness with a system in which irrigation was applied based on readings taken with a neutron probe, an accurate research tool that growers avoid because of cost and regulatory issues.

The results, published in Agricultural Water Management, showed the automated system was as effective as the manual method, producing similar grain yields and water-use efficiency levels. For the study, the sensor network was mounted on a six-span center pivot, but the technology could be adapted to other types of irrigation systems.

To develop the subsurface soil sensors, Evett and his colleagues established a cooperative research and development agreement with Acclima, Inc., of Meridian, Idaho, which makes sensor-based systems for irrigating lawns, shrubs and ornamentals. For those uses, Acclima's systems only need to monitor water content to depths of about 4 to 6 inches, but sensors used in agriculture would need to take deeper readings.

To that end, Evett and his Acclima partners are developing new technology that uses hollow, plastic tubes that can be drilled deeper into the soil. The tubes are divided into segments that attach to each other for drilling to any desired depth. Prototype designs tested in water and test fluids, and in clay and loam soils, have shown that the approach is feasible. ARS and Acclima have filed for a patent on the technology.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


OptRx crop sensors

Features & Options: Increase yield potential by applying the ideal amount of nitrogen to corn or wheat based on crop ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form