There's more to biofuel production than yield

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article


When it comes to biofuels, corn leads the all-important category of biomass yield. However, focusing solely on yield comes at a high price, scientists say.

In this week's issue of the journal Proceedings of the National Academy of Sciences (PNAS), the researchers show that looking at the big picture allows other biofuel crops, such as native perennial grasses, to score higher as viable alternatives.

"We believe our findings have major implications for bioenergy research and policy," said Doug Landis, a biologist at Michigan State University (MSU) and one of the paper's lead authors.

"Biomass yield is obviously a key goal, but it appears to come at the expense of many other environmental benefits that society may desire from rural landscapes."

Landis and a team of researchers from the Great Lakes Bioenergy Research Center and the National Science Foundation (NSF) Kellogg Biological Station Long-Term Ecological Research (LTER) site compared three potential biofuel crops: corn, switchgrass and mixes of native prairie grasses and flowering plants.

Kellogg Biological Station is one of 26 such NSF LTER sites in ecosystems from grasslands to coral reefs, deserts to mountains around the world.

"Sustainability, food security, biodiversity, biofuel production--all are important to an increasing human population," says Saran Twombly, program director in NSF's Division of Environmental Biology, which funded the research through the LTER Program. "This is a superb example of how fundamental ecological research can assist human well-being."

The scientists measured the diversity of plants, pests and beneficial insects, birds and microbes that consume methane, a greenhouse gas that contributes to climate change.

Methane consumption, pest suppression, pollination and bird populations were higher in perennial grasslands.

In addition, the team found that the grass crops' ability to harbor such increased biodiversity is strongly linked to the fields' location relative to other habitats.

For example, pest suppression, which is already higher in perennial grass crops, increased by an additional 30 percent when fields were located near other perennial grass habitats.

That suggests that to enhance pest suppression and other critical ecosystem services, coordinated land use should play a key role in agricultural policy and planning, Landis said.

"With supportive policies, we envision the ability to design agricultural landscapes to maximize multiple benefits," he said.

However, rising corn and other commodity prices tempt farmers to till and plant as much of their available land as possible.

"Corn prices are currently attractive to farmers, but with the exception of biomass yield, all other services were greater in the perennial grass crops," Landis said.

"If high commodity prices continue to drive conversion of these marginal lands to annual crop production, it will reduce the flexibility we have in the future to promote other critical services like pollination, pest suppression and reduction of greenhouse gases."

Additional MSU researchers involved in the study include Ben Werling, Timothy Dickson, Rufus Isaacs, Katherine Gross, Carolyn Malmstrom, Leilei Ruan, Philip Robertson, Thomas Schmidt, Tracy Teal and Julianna Wilson.

Scientists from the University of Wisconsin, University of Nebraska, Bard College and Trinity Christian College were part of the research.

The work was also funded by the U.S. Department of Energy and MSU AgBioResearch.


Prev 1 2 Next All



Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Harvest Map Processing™

Features & Options: Farmers harvest fields but they often don’t harvest the data. GEOSYS offers Harvest Map Processing™ as a ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form