Study seeks to pinpoint wheat drought-tolerance mechanisms

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

click image to zoomKay LedbetterSrirama Krishna Reddy, Ph.D., AgriLife Research post-doctorate research associate in Amarillo, works in the lab to conduct gene expression analysis on the different wheat varieties. Maybe it’s in the shoot, maybe the root. Texas AgriLife Research scientists are on a quest to find where different wheat varieties popular in the High Plains get their drought tolerance.

Shuyu Liu, Ph.D., Texas AgriLife Research small grains geneticist, looks over wheat grown for a drought-tolerant mechanism study. (Texas AgriLife Research photo by Kay Ledbetter)
Dr. Shuyu Liu, AgriLife Research small grains geneticist in Amarillo, is working with a group of scientists on an Ogallala Aquifer Program-funded project to identify key genetic regulators of drought tolerance.

“We are trying to understand the drought-tolerant mechanisms in wheat varieties,” Liu said. “In this study, we are looking at three widely planted varieties in the High Plains, TAM 111, TAM 112 and TAM 304.

“Based on breeders’ observation, they found that TAM 111 is very good at both irrigated and dryland,” he said. “TAM 112 is much better under prolonged dryland conditions, such as 2011. TAM 304 is very good under irrigated conditions, but not under dryland.”

Breeders’ observations from the field and the physiological traits collected in the last few years show these three cultivars have different responses to water stress; however, the basis of their adaptation remains unknown, he said.

Determining the mechanisms of adaptation to drought conditions is very important, Liu said, because in 2011 alone, drought stress resulted in the loss of more than 240 million bushels of winter wheat with a cost of about $1.33 billion in the Southern Great Plains.

“We conducted this experiment in the greenhouse to understand how these three varieties respond to water differently and at different stages,” he said. “Currently, we are at the harvesting stage. We have already collected samples from different growth stages for laboratory analysis and now we will collect samples to estimate grain yield and shoot and root biomass on each of these three varieties. In the lab, we will do gene-expression studies to understand what kind of gene is behind each of these varieties controlling their different drought–tolerance mechanisms.”

Srirama Krishna Reddy, Ph.D., AgriLife Research post-doctorate research associate in Amarillo, said, “We want to understand what mechanisms exist in the plant – whether in the root system or the shoot system. Several physiological and molecular tools will be used to discover the mechanisms behind the drought adaptation.”

This wheat study was planted in late November and includes the two drought-tolerant varieties and one drought-susceptible variety, Krishna Reddy said.

“We started this study with three different blocks,” he said. “Leaf samples from two other blocks were harvested for gene expression analysis using microarray technology. With this last block, we are going to look at the grain yield and the harvest index under prolonged drought conditions and irrigated conditions.”

Liu said at the same time they have been conducting this greenhouse experiment, all these three varieties have been growing in the field and many data will be collected by the AgriLife Research stress physiology and breeding groups at Amarillo, such as yield and its components and canopy temperature.

“At the end, we will combine the greenhouse data, field data and lab data together to figure out what the difference is for the drought-tolerant mechanism among these three varieties,” he said.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Truck and Trailer Mounted Tenders

Doyle’s Tenders are available in 8’, 10’, 16’, and 24’ lengths and include truck or trailer mounted with side or ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form