Plants use 'unusual' pathway to make essential amino acid

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Purdue University researchers have discovered a microbial-like pathway in plants that produces phenylalanine, an amino acid that is a vital component of proteins in all living organisms.

Plants mainly synthesize phenylalanine through a chain of chemical reactions that converts the organic acid arogenate to phenylalanine. But Purdue researchers demonstrated that plants also use an alternative pathway found in most microorganisms to make phenylalanine from phenylpyruvate.

"Now that we have genetic evidence that this pathway exists in plants, this opens up many exciting possibilities for metabolic engineering," said Natalia Dudareva, distinguished professor of biochemistry. "This alternative pathway provides a whole new avenue to synthesize phenylalanine."

Phenylalanine is an aromatic amino acid that serves as a building block for many compounds essential to plant structure, reproduction, defense and communication. Manipulating the alternative pathway to increase production of phenylalanine could help improve plants' response to pests, Dudareva said.

Phenylalanine is also used to synthesize other compounds such as benzoic acid, a component of cancer-treating drugs.

Humans and animals cannot make phenylalanine, relying on plants to supply the phenylalanine necessary to build proteins. Increasing the phenylalanine levels in plants could yield more nutritional foods, said Heejin Yoo, a biochemistry graduate student and study co-author.

The researchers found that plants use both the arogenate pathway and the alternative pathway to make phenylalanine. But flux through the alternative pathway increases when stress factors limit a plant's ability to use the main pathway. Joshua Widhalm, a postdoctoral fellow in biochemistry and study co-author, likened the pathways to a system of water pipes.

"Imagine two diverging pipes that share an opening," he said. "The main pathway is a pipe with a greater diameter than the alternative pathway. You're always going to have a little bit flowing through the smaller pipe. But if you plug up that main pathway, you're going to see more redirected through the alternative pathway."

When the researchers separately blocked each of the two steps in the arogenate pathway in petunia flowers, phenylalanine levels decreased. But when they blocked both steps simultaneously, phenylalanine production spiked.

"That's when we knew there had to be some other way of synthesizing phenylalanine," Dudareva said.

The researchers were surprised to find that in the alternative pathway phenylpyruvate is converted into phenylalanine by taking a nitrogen group from tyrosine, another essential amino acid.

"It's very unusual that the cell would sacrifice tyrosine to make phenylalanine," Dudareva said. "That may be one reason why this pathway was not discovered earlier."

Enzymes involved in the arogenate pathway are tightly controlled to balance phenylalanine levels, halting the production of phenylalanine if levels are too high. Regulation is less strict in the alternative pathway, which is only limited by the availability of tyrosine.

The more relaxed regulation of the alternative pathway makes it a more promising target for metabolic engineering than the arogenate pathway, Dudareva said.

"When you're working with the arogenate pathway, you have to take its sensitivity to phenylalanine levels into account, which is very tricky," she said. "But in the alternative pathway, you only need to have a source of nitrogen groups to synthesize as much phenylalanine as you want."

While the arogenate pathway occurs in the plastids - organelles that are also the site of photosynthesis - the alternative pathway is located in the cytosol, the fluid that suspends organelles and other particles inside a cell. This is the first indication that the synthesis of aromatic amino acids can occur outside of the plastids, Widhalm said.

"It appears that plant aromatic amino acid metabolism is even more dynamic than we gave it credit for," he said.

The paper is available in Nature Communications at http://www.nature.com/ncomms/2013/131125/ncomms3833/full/ncomms3833.html


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


X-TENDED REACH GRAIN CARTS

YOUR BEST HARVEST IS NOW WITHIN REACH J&M introduces their patented line of X-tended Reach grain carts, featuring a frontfolding single ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form