Plants evolve ways to control embryo growth

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

A new generation of high yield plants could be created following a fundamental change in our understanding of how plants develop.
 
The research, led by the University of Warwick and published in the journal Science, provides the first evidence that plants have evolved ways to control embryo growth and development by emitting information from surrounding cells.
 
click image to zoomConfocal laser scanning microcope image of an early embryo with surrounding placental endosperm cells. The international study, headed by Dr Jose Gutierrez-Marcos from Warwick’s School of Life Sciences, revealed that female sex cells and the placenta-like endosperm contained within plant seeds send out specific signals to developing embryos to help direct their growth.
 
“This new information fundamentally changes our understanding of plant development and opens up exciting avenues of research, which could allow for the breeding and propagation of plants that incorporate the most successful characteristics of existing species”, said Dr Gutierrez-Marcos.
 
"With rising global populations and changing climates, there is an increasing need for more robust plant varieties that provide higher yields and can grow under a wide set of environmental conditions. By understanding how plants control embryo growth we have opened up the possibility of breeding a new generation of plants that potentially meet these requirements."
 
Plant embryos are found within seeds and, once germinated, give rise to the adult plant. It was previously thought that embryo development was determined by the genetic make-up of the embryo alone.
 
The new research has however shown that specific cell-types present in the embryo environment can send out protein signals to also influence this process.  
 
This situation mirrors a similar scenario in mammals, whereby embryo development is regulated by signals sent out by neighbouring placental cells.
 
Understanding how these cells of non-embryonic origin can influence developing plant embryos, the researchers argue, is key to creating new, improved plant species including advantageous hybrid crops, where at present embryos often fail to develop properly when distantly-related parents are used.
 
"Before our discovery, the ability of non-embryonic plant cells to direct embryo growth was unrecognised, but we now have valuable information that neighbouring cells can directly interact with and influence embryos, most likely via a cascade of protein signals. The next step is to identify the embryonic factors that respond to these non-embryonic signals and understand their mode of action" commented Dr Gutierrez-Marcos.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Grain Storage Systems

Behlen Grain Storage Systems offers large capacity bins with diameters from 16’ to 157’ and capacities exceeding 1,500,000 bushels. All ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form