Plant scientists hope to use epigenetics to improve crops

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Plant scientists long have known they can alter crops genetically to improve performance; they've been doing it thousands of years. But what if they could dramatically improve crops by leaving the genes themselves unchanged but instead change how they're expressed in a way that would be passed down to future generations?

That question is at the heart of research at the University of Nebraska-Lincoln's Center for Plant Science Innovation, and the results so far are encouraging. The findings, expected to be commercialized in the next couple of years, could play a role in helping meet the world's dramatically increasing need for food, said Sally Mackenzie, Institute of Agriculture and Natural Resources plant scientist.

Specifically, scientists focused on a gene called MSH1, short for MUTS Homolog1, which is present in every plant. They discovered that if they "silenced" that gene in some plants, their growth patterns changed dramatically—dwarfed, highly branched and behaving as if they have seen high levels of stress, including cold, heat, sale, drought and high light. Then, after they reintroduced the gene and crossbred it with a plant that wasn't altered, the crossbred plant showed signs of enhanced growth, vigor, lodge resistance, high biomass production and higher yield.

Those changes in some cases were huge: up to a 100% increase in above-ground biomass, up to a 70% increase in yield in sorghum, for example.

"We changed the way the plant is expressing its genes, even though we didn't change the genes themselves," Mackenzie said. The process is called epigenetics.

Mackenzie stresses these key points about her lab's work:

•It's not transgene-mediated modification, which is controversial in some parts of the world and heavily regulated, thus slow to reach the market.

• It's worked in several crops so far—not so-called model crops, but actual agronomically useful crops, most importantly soybean, sorghum and millet, and also tobacco and tomatoes.

• These changes can occur in just two generations of plants, rather than the 10 or more it can take for genetic modification to take hold. That's appealing given the sense of urgency in figuring out how to feed a world whose population is expected to reach 9 billion by 2050.
The potential of epigenetics to improve other crops is unknown. It's possible that most of the potential already has been reached in corn, for example, because it's been heavily hybridized. Until now, scientists couldn't know what percentage of improvements in corn was due to genetic changes and what percentage was due, unwittingly, to epigenetics.

Besides soybean and sorghum, it seems likely there's great potential for epigenetics to improve crops such as cotton and dry beans.

"And if you could do this in rice and wheat, you could perhaps change the world," Mackenzie said.

"It's promising, but I don't want to overhype this," Mackenzie said. Yet to be determined is whether these effects will be stable and able to be scaled up as the techniques are commercialized and expanded to more fields and more crops.

"It's important we explore this for every potential it offers for addressing some of the challenges in agriculture," she added.

The research is funded by the Department of Energy and National Science Foundation.

Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...

Comments (0) Leave a comment 

e-Mail (required)


characters left

Blend and Bulk Tower Systems

Waconia Towers provide speed, efficiency and reliability that only gravity-fed systems can offer. Towers are available with up to 300 ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form