New genetic discovery could regulate plant growth

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Sometimes, research yields unexpected results. At Rutgers University–Camden, a group working together to decipher the genetic basis of cell shapes in plants made a remarkable discovery: a new gene.

The gene, named GIGANTUS1 (or GTS1 for short), is a member of a protein family that controls seed germination, growth, and biomass accumulation in plants. Essentially, it helps plants regulate growth.

“Plants must tightly regulate their cellular functions to grow and cope with constantly changing environmental conditions, but exactly how this occurs is largely unknown,” says Simeon Kotchoni, an assistant professor of biology at Rutgers–Camden.

To address the question, a group of students in Rutgers–Camden’s Computational Biology Summer Program analyzed thousands of genes governing cell shape patterning and growth in a model plant known as Arabidopsis thaliana, which shares traits with a large number of other plant species. The students came across the GTS1 gene during their work last summer and their findings were published in January in the journal BMC Plant Biology.

“It’s amazing to be part of such an exciting discovery,” says Lyla Jno Baptiste, a senior Rutgers–Camden biology major from North Brunswick. “Doing research like this can be life changing. It proves that research isn’t just some abstract thing. It can have real significance.”

The breakthrough discovery is important because it could help engineer important crops like corn and rice.

“It could reduce the amount of time needed for crop growth cycles in the plants we depend on for food,” Jno Baptiste says. “We could also use this discovery to create sustainable energy. If we can increase plant biomass production, then we can increase biofuel production and reduce our dependence on conventional fuel sources like oil, which in turn reduces their negative effects on the environment.”

Jno Baptiste was one of three students to work on the research project last summer. The team also included Kelle-Shae Bryson (Westampton/Burlington County College) and Sarah Kamal (Sewell/Camden County College). All three students were among 10 undergraduates who participated in Rutgers–Camden’s Computational Biology Summer Program last June through August. The 10-week study is funded by the National Science Foundation and falls under its Research Experiences for Undergraduates program.

Four different research projects fusing the biological sciences, mathematics, computer science, chemistry, and physics were performed during the summer program, which is open to undergraduates from all over the United States.

“A discovery like this one demonstrates that research done at Rutgers–Camden, and research done through this summer program, can have worldwide impact,” says Benedetto Piccoli, the Joseph and Loretta Lopez Chair in Mathematics at Rutgers–Camden and Ph.D. program director for Rutgers–Camden’s Center for Computational and Integrative Biology. “It shows that undergraduate research can have amazing results.” 

Jno Baptiste, who is working as an assistant in Kotchoni’s lab, is continuing her research on the new gene this semester.  She hopes the additional work unlocks new information about growth and biomass accumulation in plants.

“Scientists can devote several years to pinpointing the genes that contribute to growth in specific plants, but they can now apply the findings from our work, in which we used a model plant species, to various other plants,” Kotchoni says. “It will be interesting to study the GIGANTUS1 gene function in agronomically important crops with the aim of improving crop yield and biomass accumulation.”

The Rutgers–Camden Center for Computational and Integrative Biology combines the expertise of researchers from traditional biomedical disciplines — such as biology, chemistry and psychology — with the analytic methods employed by mathematicians, physicists and computer scientists to understand how individual biological systems work.

Rutgers–Camden’s Computational Biology Summer Program will continue in June with a new cohort of students.  It is open to students enrolled in community colleges, non-traditional students, veterans, and students from communities underserved in STEM (science, technology, engineering, and mathematics) disciplines. For information, visit ccib.camden.rutgers.edu/reu


Prev 1 2 Next All



Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Tower Blend System

The Layco Tower fertilizer handling option is designed for high capacity retail or wholesale use. The standard Tower features the ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form