Let’s just harvest invasive species. Problem solved?

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Although invasive Asian carp have been successfully harvested and served on a dinner plate, harvesting invasive plants to convert into ethanol isn’t as easy. According to a recent study at the University of Illinois, harvesting invasive plants for use as biofuels may sound like a great idea, but the reality poses numerous obstacles and is too expensive to consider, at least with the current ethanol pathways.

“When the topic of potential invasion by non-native biofuel crops has been raised at conferences I’ve attended, the ecologists in the room have suggested we use biomass from existing invaders instead,” said Lauren Quinn, an invasive plant ecologist in U of I’s Energy Biosciences Institute. “They worry about the potential deployment of tens of thousands of acres of known invaders like Arundo donax for ethanol production. They’d say, ‘we have all of these invasive plants. Let’s just harvest them instead of planting new ones!’ But when I analyzed the idea from a broader perspective, it just didn’t add up.”

Quinn explored the idea of harvesting invasive plants from many angles but said that the overarching problem is the non-sustainability of the profit stream. “From a business person’s perspective, it just doesn’t function like a typical crop that is harvested and then replanted or harvested again the following year,” she said. “Here, land managers are trying to get rid of an invasive plant using an array of methods, including herbicides, so there wouldn’t necessarily be multiple years of harvest.”

Other obstacles Quinn examined are the need for specially designed harvesting equipment, the development of new conversion technologies for these unique plants, and even the problems associated with transportation.

“One of the biggest issues is the absence of appropriate biorefineries in any given area,” Quinn said. “If there isn’t one nearby, growers would have to transport the material long distances, and that’s expensive.”

Perhaps more important, Quinn discussed the issues with the high variability of the cell wall composition across different species. “Most existing or planned biorefineries can process only a single, or at best, a small handful of conventional feedstocks, and are not likely to be flexible enough to handle the variety of material brought in from invasive plant control projects,” Quinn said. “The breakdown and processing of plant tissues to ethanol requires different temperatures, enzymes, and equipment that are all highly specific. The proportion of cellulose, lignin, and other fractionation products can differ even within a single genotype if it is grown in multiple regions so the variations between completely different plant types would be an even greater hurdle.”

Quinn isn’t discounting the idea of harvesting invasive plants, however. She encourages control of invasive populations and subsequent ecological restoration but does not believe that invasive biomass can replace dedicated energy crops at present.

“One day there might be a pathway toward ethanol conversion of invasive biomass,” Quinn said. “But until we do get to that point, there may be possibilities to use invasive plants as alternative sources of energy, like combustion for electricity. Invasive biomass could drop into the existing supply of biomass being co-fired with coal in the already huge network of electrical power plants across the country. That would eliminate the technological barriers that conversion to ethanol presents.

“I’m not saying that we shouldn’t continue to look at ethanol conversion processes eventually, I’m just saying that right now, it doesn’t seem to make a lot of economic sense.”

“Why not harvest existing invaders for bioethanol?” was published in a recent issue of Biological Invasions. A. Bryan Endres and Thomas B. Voigt contributed. The research was funded by the Energy Biosciences Institute.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (1) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left

anonymous    
Ohio  |  November, 21, 2013 at 08:55 AM

One of the keys to bio fuel production seems to be fermentation to produce energy gases. It amazes me how often scientist working in energy try to recreate the wheel of feeding fermentation bacteria. It seems to me the would be better off to work closely with Ruminate nutritionist. They have been studying energy production for animal growth for years. If fodder is to be used and multiple sources of feed stuff is to be handled it seems to become a complex system like feeding TMR to ruminate animals.


Pacesetter Grain Hopper

The Pacesetter Gain Hopper features original and innovative ideas like the patented RollerTrap™, the industry’s easiest to open and maintain trap ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form