Gene removal could have implications beyond plant science

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

For thousands of years humans have been tinkering with plant genetics, even when they didn’t realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, and produced more.

Zachary Nimchuk, assistant professor of biological sciences and a member of the faculty of health sciences at Virginia Tech, is working with a technology that refines the process by honing in on individual genes within a plant’s DNA.

Nimchuk builds on a technology developed by George Church, a professor of genetics at the Harvard Medical School that knocks out specific genes in a plant’s DNA to get rid of a trait that is unwanted, or add a trait that is desirable. This process was discovered by looking at bacteria and how they take the DNA of invading viruses and use it to immunize themselves against further attacks.

“We realized the system could be used as a way to edit and modify genomes from higher organisms,” Nimchuk said. “Unlike traditional crossing of plants which may allow for the transmission of both desired and undesired traits, we are taking out the specific traits we don’t want, or adding what we do want, without removing or adding additional unwanted traits. And we’re doing it without introducing any foreign DNA into the plant meaning it’s not a genetically modified organism as people understand GMO, in the traditional sense.”

The technology is a system made up of two components, an enzyme and RNA. The enzyme, CAS9, has the ability to chop up DNA and, as Church’s group originally showed, RNA can guide and bind the enzyme to a target gene. The chewing activity within the enzyme will chop the DNA in half which allows scientists to install repair genes. The process has the effect of allowing the removal of a very specific unwanted trait and replacing it with a very specific desired trait allowing researchers to determine the role of the removed gene.

For Virginia Tech scientists, the implications of Nimchuk’s research is far-reaching because the technology can be used in any system and target any gene. For instance, the potential is large as it relates to being able to target and replace specific genes that might contribute to disease states in humans by replacing a mutated gene with a normally functioning gene as a therapy.

For Nimchuk, however, his work is focused on plants and crops and how they are used to fuel society or feed people. “We are looking at genes that might help control salt tolerance, crop yields, or other environmental factors to include how crops fend off pathogens,” he said. “We’re at a tip of the iceberg stage of seeing what we can and cannot do, but it’s an exciting time to be using the technology right now.”

Nimchuk, a native of Toronto who received his doctorate from the University of North Carolina, Chapel Hill, and who is fresh off post-doctoral work at Cal Tech, joined Virginia Tech in the fall of 2013 and is already collaborating with scientists in working in other fields.

“Every organism has DNA, and RNA is capable of binding with other DNA molecules, so essentially that basic machinery is going to be compatible with every system,” Nimchuk said. “This has been shown to work in everything from fish to frogs to flies to human cells and yeast, so we know the technology works. I’m hoping this will be a technology that can be taken up by anybody who works with a biological system and who has an interesting question or problem they want solved.”

The College of Science at Virginia Tech gives students a comprehensive foundation in the scientific method. Outstanding faculty members teach courses and conduct research in biological sciences, chemistry, economics, geosciences, mathematics, physics, psychology, and statistics. The college offers programs in cutting-edge areas including, among others, those in energy and the environment, developmental science across the lifespan, infectious diseases, computational science, nanoscience, and neuroscience. The College of Science is dedicated to fostering a research-intensive environment that promotes scientific inquiry and outreach.


Prev 1 2 Next All



Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Declining Weigh Blending System

Ranco Declining Weigh (DW) is the standard in fertilizer blending because of the speed and accuracy of the blending process. ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form