Continued dry weather expected to impact corn yield

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Tassels became visible in early-planted corn fields around Minnesota at the beginning of last week, coinciding with a week of unusually hot and continually dry weather. While some isolated areas in Minnesota received a little rain late last week, most did not.

This week, a large percentage of the corn in Minnesota will be pollinating. Although air temperatures across Minnesota during the next 10 days are forecast to be near optimal for corn (mid- to upper-80s), there is little chance of rain during this time. How will these weather conditions affect the corn crop?

The critical period for avoiding stress in corn is during the time span two weeks before and two weeks after tassel emergence, with the most important time being the eight days after tassels emerge, also known as the pollination period. Drought and heat stress around tassel emergence can affect the success of pollination and the number of kernels per ear.

Heat stress generally has less of an impact on corn at pollination than water stress, and does not occur until temperatures exceed 86 degrees with dry soils, or 92 degrees with adequate soil moisture and high humidity. With high temperatures, corn plants require more energy to maintain themselves. Temperature and/or water stress before pollination can reduce the number of potential kernels per row, while combined temperature and water stress shortly after tassels emerge can cause exposed silks to desiccate and not accept pollen.

Fortunately, much of the corn that was pollinating last week during the high temperatures was not under severe moisture stress, as the roots in these early-planted fields were accessing water deep in the soil. Thus, the direct impact of last week's high temperatures on pollinating corn in Minnesota was likely low. Instead, the amplified loss of soil moisture as a result of high temperatures likely had, and will continue to have a greater impact on the crop.

Water stress before pollination affects the number of potential kernels per row. It can also cause silk emergence and elongation to slow while hastening or not affecting pollen shed, resulting in asynchrony between pollen shed and silk emergence. This asynchrony can result in poor kernel set and ears with missing kernels. The success of kernel set can be evaluated throughout and soon after the pollination period by carefully unwrapping husks and gently shaking ears, as silks detach from the ear within a couple days after successful pollination.

However, water stress following successful pollination is more common and will likely be the main result of dry conditions this year. This water stress results in the loss of kernels at the tips of ears, but kernel loss can occur in other patterns on ears if water stress is intense enough or combined with other stresses.

The current dry conditions in many parts of the state, which are expected to persist, could affect the success of pollination in some areas, but will more likely result in the loss of kernels following pollination. This loss of kernels could be a little greater than normal, but will depend on current soil moisture levels and future rainfall. Even so, the corn in Minnesota is in far better shape than that in east-central Corn Belt states such as Illinois, Indiana, and Ohio.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Demco 1400 Grain Cart

Demco offers a 1400 bushel grain cart to provide unmatched efficiency and operator convenience. In addition to the large 1400 ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form