Climate change promotes growing conditions for charcoal rot

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

click image to zoomGreenhouse study showing drought-stressed soybean with different levels of resistance to charcoal rot. With more than 100 diseases that can attack soybean crops, why would charcoal rot rise to the top of the most wanted list? University of Illinois scientists cite the earth’s changing climate as one reason that more research is needed on the fungus that causes charcoal rot.

Fungi may often be associated with cool, damp growing conditions but Macrophomina phaseolina, the fungus that causes charcoal rot, prefers hot and dry drought conditions.

“As the climate continues to change and we see more extremes in the weather, including hotter, drier summers, this fungus will have more favorable conditions to gain a foothold in soybean and other crops,” said Osman Radwan, a U of I molecular biologist. “If we look at diseases of soybean, we find that soybean cyst nematode (SCN) is at the top, but in the past decade or so, charcoal rot has become one of the top 10 diseases that affect soybean yield.”

In examining previous studies on charcoal rot, Radwan and his team noticed that worsening weather conditions associated with climate change, such as higher heat and drought, brought an increase in the incidence of charcoal rot in soybean. He suggests that a research strategy be created to develop a high-yielding soybean that is both resistant to charcoal rot and drought tolerant.

“Right now we are screening lines of soybean to charcoal rot and drought stress, in collaboration with Glen Hartman, a USDA-ARS and U of I plant pathologist,” Radwan said. “His team is screening for charcoal rot resistance, and I am screening for drought tolerance,” Radwan said. “Our ultimate goal is to identify the line that shows resistance to both charcoal rot and drought stress and in this way improve soybean tolerance to both the pathogen and the extreme weather conditions.”

The review of research on the subject has been written along with Hartman and Schuyler Korban from U of I. Radwan said that this background for what’s already been done on the topic will help them to develop a strategy for the next step.

Radwan emphasized that it’s not just soybean crops at risk. The fungus causes charcoal rot in about 500 other host plants, including corn, sorghum, sunflower, and other important crops. This fungus also grows in high concentrations of salt, which isn’t much of a problem to growers in the United States, but it is for farmers in developing countries where salinity is considered an issue. Consequently, the plant must be able to tolerate drought, salt, and resist this fungus at the same time.

One intriguing direction Radwan described that shows promise is that there may be interactions between M. phaseolina and other soil pathogens such as soybean cyst nematode (SCN) and sudden death syndrome (SDS).

“We have some assumptions about whether SCN can increase or decrease the incidence of charcoal rot as resistance to both pathogens might be controlled by two different pathways,” Radwan said. He explained that biotrophic pathogens such as SCN need plant tissue to survive, but the fungus that causes charcoal rot is necrotrophic, meaning that it kills the plant tissue, then lives on the dead plant cells.

“We need to understand at the molecular level how these two pathogens interact when they are present in soybean fields. Understanding the mechanisms of molecular interactions between SCN and M. phaseolina will help molecular biologists and breeders to design an effective method to control both diseases and to breed soybean for resistance to both pathogens,” he said.

Although no plants have complete immunity from the fungus, some soybean lines have been shown to have partial resistance to it. Hartman’s group has already begun screening many lines in soybean for resistance to charcoal rot.

In controlled greenhouse conditions, Radwan grows a variety of soybean cultivars in sandy soil and then stops watering the plants to simulate drought. The susceptible ones wilt and, even after adding water, don’t recover. Those that are tolerant to drought survive.

“If we screen for drought stress, we hope to find some cultivars that are charcoal rot resistant and others that are drought tolerant so that we can cross them,” Radwan said. “Of course, they also must have good agronomic traits, such as having a high yield potential, in order to be acceptable to farmers.”

Genetic Mechanisms of Host-Pathogen Interactions for Charcoal Rot in Soybean was published in an issue of Plant Molecular Biology Reporter. Laura V. Rouhana, Glen L. Hartman, and Schuyler S. Korban contributed to the research.


Prev 1 2 Next All



Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (1) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left

Jerry    
Iowa  |  July, 11, 2014 at 08:51 AM

It is amazing all the so called experts on man made climate change,, preach gloom and doom unless all mankind gets back in the mud huts of their ancestors and starve to death and relieve the earths burden of to many human beings,in their opinion. With all the never seen before historic weather change of 2014 the worlds food production, which is based on climate being favorable to growing food is at a historical high.


Conveyor Equipment

Adams Fertilizer Equipment manufactures several styles and types of conveying equipment including: chain drag conveyors, bucket elevator legs, stationary and ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form