Chinese scientists crack the genome of another diploid cotton

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Chinese scientists from Chinese Academy of Agricultural Sciences and BGI successfully deciphered the genome sequence of another diploid cotton-- Gossypium arboreum (AA) after the completed sequencing of G. raimondii (DD) in 2012. G. arboreum, a cultivated cotton, is a putative contributor for the A subgenome of cotton. Its completed genome will play a vital contribution to the future molecular breeding and genetic improvement of cotton and its close relatives. The latest study today was published online in Nature Genetics.

As one of the most important economic crops in the world, cotton also serves as an excellent model system for studying polyploidization, cell elongation and cell wall biosynthesis. However, breeders and geneticists remain little knowledge on the genetic mechanisms underlying its complex allotetraploid nature of the cotton genome (AADD). It has been proposed that all diploid cotton species present may have evolved from a common ancestor, and all tetraploid cotton species came from interspecific hybridization between the cultivated species G. arboreum and the non-cultivated species G. raimondii.

After the completed sequencing of G. raimondii in 2012, researchers started the work on decoding the genome of G. Arboreum. In this study, they sequenced and assembled the G. arboreum genome using whole-genome shotgun approach, yielding a draft cotton genome with the size of 1,694 Mb. About 90.4% of the G. arboretum assembled scaffolds were anchored and oriented on 13 pseudochromosomes.

Furthermore, researchers found the long terminal repeat (LTR) retrotransposons insertions and expansions of LTR families contributed significantly to forming the double-sized G. arboreum genome relative to that of G. raimondii. Further molecular phylogenetic analyses suggested that G. arboreum and G. raimondii diverged about 5 million years ago, and the protein-coding capacities of these two species remained largely unchanged.

To investigate the plant morphology mechanisms of cotton species, a series of comparative transcriptome studies were performed. Results suggested that NBS-encoding subfamilies played an essential role on the immune to Verticillium dahliae. The resistance of G. raimondii on Verticillium dahliae was caused by expansion and contraction in the numbers of NBS-encoding genes, accordingly the loss in the genome of G. arboreum was responsible to their susceptible.

Another interesting finding of this study is the cotton fiber cell growth, and they found the 1-aminocyclo-propane-1-carboxylic acid oxidase (ACO) gene was a key modulator. Researchers suggest the overproduction of ACO maybe the reason why G. raimondii have a poor production of spinnable fiber, while the inactivation of ACO in G. arboreum might benefit its fiber development.

The G. arboreum genome will be an essential reference for the assembly of tetraploid cotton genomes and for evolutionary studies of Gossypium species. It also provides an essential tool for the identification, isolation and manipulation of important cotton genes conferring agronomic traits for molecular breeding and genetic improvement.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Grain Storage Systems

Behlen Grain Storage Systems offers large capacity bins with diameters from 16’ to 157’ and capacities exceeding 1,500,000 bushels. All ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form