Carbon sequestration not so simple in biomass crop production

decrease font size  Resize text   increase font size       Printer-friendly version of this article Printer-friendly version of this article

Findings at the U.S. Department of Agriculture (USDA) are providing information about the soil carbon dynamics that play a crucial role in lifecycle assessments of bioenergy production. These studies at the Agricultural Research Service (ARS), USDA's chief intramural scientific research agency, support the USDA priority of developing new sources of bioenergy.

Retaining carbon in the soil—called carbon sequestration—significantly affects soil fertility and greenhouse gas emissions, so it has a major impact on the long-term sustainability of bioenergy crop production. In one study, an ARS team conducted a 9-year investigation examining the impact fertilizer and harvest treatments had on soil carbon sequestration in biomass crops. Scientists contributing to the study included geneticist Ken Vogel, soil scientist Gary Varvel, agronomist Rob Mitchell, and soil scientist Ron Follett.

The team applied nitrogen fertilizer at three different rates to fields of perennial switchgrass and annual no-till maize to see how management practices affected soil carbon sequestration. Postharvest stover—corn plant residue left on the field after harvest—was not removed on half of the maize fields. On the other half of the maize fields, only half the stover was removed.

The scientists found that in the maize fields, soil carbon levels increased over time at all depths, with all nitrogen treatments, and with all postharvest stover management. They also determined that more than 50 percent of the soil carbon was found at depths between 1 foot and 5 feet below the soil surface.

More than 50 percent of the soil carbon in the switchgrass fields was also found between 1 and 5 feet below the soil surface. The average annual increase of soil carbon throughout the first 5 feet of subsoil also exceeded 0.9 tons per acre each year, which was equivalent to 3.25 tons of carbon dioxide per acre per year.

The team concluded that calculating soil carbon sequestration rates for bioenergy crops needs to factor in the effects of crop selection, soil differences, environmental conditions, and management practices. Additionally, the deep-rooted nature of these plants requires soil sampling to a depth of 5 feet to account for the increases in soil carbon.

Results from this study were published in Bioenergy Research.

Vogel recently retired from the ARS Grain, Forage, and Bioenergy Research Unit in Lincoln, Neb., where Mitchell still works. Varvel recently retired from the ARS Agroecosystem Management Research Unit in Lincoln, Neb., and Follett recently retired from the ARS Soil, Plant, and Nutrition Research Unit in Fort Collins, Colo.


Buyers Guide

Doyle Equipment Manufacturing Co.
Doyle Equipment Manufacturing prides themselves as being “The King of the Rotary’s” with their Direct Drive Rotary Blend Systems. With numerous setup possibilities and sizes, ranging from a  more...
A.J. Sackett Sons & Company
Sackett Blend Towers feature the H.I.M, High Intensity Mixer, the next generation of blending and coating technology which supports Precision Fertilizer Blending®. Its unique design allows  more...
R&R Manufacturing Inc.
The R&R Minuteman Blend System is the original proven performer. Fast, precise blending with a compact foot print. Significantly lower horsepower requirement. Low inload height with large  more...
Junge Control Inc.
Junge Control Inc. creates state-of-the-art product blending and measuring solutions that allow you to totally maximize operating efficiency with amazing accuracy and repeatability, superior  more...
Yargus Manufacturing
The flagship blending system for the Layco product line is the fully automated Layco DW System™. The advanced technology of the Layco DW (Declining Weight) system results in a blending  more...
Yargus Manufacturing
The LAYCOTE™ Automated Coating System provides a new level of coating accuracy for a stand-alone coating system or for coating (impregnating) in an automated blending system. The unique  more...
John Deere
The DN345 Drawn Dry Spreader can carry more than 12 tons of fertilizer and 17.5 tons of lime. Designed to operate at field speeds up to 20 MPH with full loads and the G4 spreader uniformly  more...
Force Unlimited
The Pro-Force is a multi-purpose spreader with a wider apron and steeper sides. Our Pro-Force has the most aggressive 30” spinner on the market, and is capable of spreading higher rates of  more...
BBI Spreaders
MagnaSpread 2 & MagnaSpread 3 — With BBI’s patented multi-bin technology, these spreaders operate multiple hoppers guided by independent, variable-rate technology. These models are built on  more...


Comments (0) Leave a comment 

Name
e-Mail (required)
Location

Comment:

characters left


Speed King Honeycomb BeltVeyors

CrustBuster/SPEED KING Inc. has a full line up of Honeycomb style BeltVeyors that offer high capacity, greater discharge height with ... Read More

View all Products in this segment

View All Buyers Guides

Feedback Form
Feedback Form